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Abstract—Large-scale robotic skin with tactile sensing ability is
emerging with the potential for use in close-contact human–robot
systems. Although recent developments in vision-based tactile sens-
ing and related learning methods are promising, they have been
mostly designed for small-scale use, such as by fingers and hands, in
manipulation tasks. Moreover, learning perception for such tactile
devices demands a huge tactile dataset, which complicates the
data collection process. To address this, this study introduces a
multiphysics simulation pipeline, called SimTacLS, which considers
not only the mechanical properties of external physical contact but
also the realistic rendering of tactile images in a simulation envi-
ronment. The system utilizes the obtained simulation dataset, in-
cluding virtual images and skin deformation, to train a tactile deep
neural network to extract high-level tactile information. Moreover,
we adopt a generative network to minimize sim2real inaccuracy,
preserving the simulation-based tactile sensing performance. Last
but not least, we showcase this sim2real sensing method for our
large-scale tactile sensor (TacLink) by demonstrating its use in two
trial cases, namely, whole-arm nonprehensile manipulation and
intuitive motion guidance, using a custom-built tactile robot arm
integrated with TacLink. This article opens new possibilities in the
learning of transferable tactile-driven robotics tasks from virtual
worlds to actual scenarios without compromising accuracy.

Index Terms—Deformable model, machine learning, soft
robotics, tactile sensors.

I. INTRODUCTION

THE sense of touch not only provides a diverse range of
information from interactions involving physical contacts,

such as interactive force, texture, and temperature, but also is
considered to be a means of communication in human–human
or human–machine interactions. Skin, the largest organ of the
human body covering whole limb or torso, possesses a tactile
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sensing system that has been inspiring robotics community
toward the creation of fully autonomous social and task-based
machines with the sense of touch [1], [2]. For years, research on
this topic, especially on the large-scale mimicking human skin,
based on various transducing principles has been intensively
investigated [3], [4], [5]. Nonetheless, designing tactile sensors
faced complexity in system integration and data processing,
since increasing the scale requires a great deal of embedded
sensing elements. Recently, vision-based tactile (ViTac) sensors
have emerged as an effective method for the implementation
of tactile sensing with a simple design [6], [7], [8]. In detail,
the deformation of soft artificial skins upon physical contact
with an object is detected through the optical tracking of visual
features, such as markers or reflective membranes, which is then
translated into tactile information, including contact location,
force, vibration, object texture, and so on. The ViTac sensors
have been found useful in small-scale manipulation tasks using
robotics hands/fingers [9], [10]; however, their potential uses in
large-scale whole-arm applications have not been comprehen-
sively investigated.

We previously demonstrated marker-based vision-based tac-
tile sensing (TacLink) with the potential to deliver rich contact
information from tactile images based on image processing
techniques [11]. In addition, we leveraged the use of a su-
pervised learning method with a high sampling rate for the
same setup [12], [13]. The former method, through thorough
model analysis and calibration, can yield high sensing per-
formance; its complication in modeling and processing is not
widely preferred. On the other hand, data-driven methods like
the latter method need a huge amount of data to categorize visual
representations, which requires a burdensome experimental data
acquisition process [12]. This problem would be magnified in
applications with large-scale skin and more complex contact
scenarios. As a result, there is an emerging necessity for a
pipeline that allows simulation-based learning and accommo-
dates the physics of interactive contact in ViTac sensing systems.
While visual effects have been reflected successfully in several
simulators, such as Gazebo or Unity, interactions between the
sensor skin and its external environment are often modeled as
rigid contacts [14], [15].

In this article, we propose a novel simulation pipeline toward
a framework for a large-scale marker-cum-vision-based tactile
sensor [see Fig. 1(a)] that employs the physics engine SOFA1

1Simulation Open Framework Architecture: www.sofa-framework.org
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Fig. 1. SimTacLS overview. (a) SimTacLS: Simulation pipeline for large-scale
ViTac sensors. Simulation pipeline, comprised of physics engines SOFA and
Gazebo, was constructed to collect a labeled simulation dataset to train the
TacNet model, including the information of tactile skin deformation (output)
and virtual images (input), and a scheme of sim2real transfer learning was done
through a generative network (R2S-GN) of real images into simulation ones.
(b) Scalability and extendibility of SimTacLS platform. Expected applications
of SimTacLS to vision-based tactile sensors of diverse shapes and sizes.

to describe complex physical interactions of deformable bodies
based on the finite-element method (FEM). The geometry of
the skin and the markers (.STL format) were separately fed
to Gazebo environment, in which a built-in sensor plug-in was
exploited to reproduce imaging patterns (i.e., markers) as visual
versions of tactile images captured by cameras. The virtual
images and ground-truth tactile feedback (such as forces and
displacements distributed at each element node) recorded from
simulation are then utilized as input and output (label) data to
train a deep neural network, named TacNet. Moreover, in order to
apply the effectiveness of the TacNet model to real-world tactile
images, we proposed a real-to-simulation generative network
(R2S-GN) that uses a generative adversarial network (GAN) to
automatically learn how to transform real observations of tactile
images into simulated ones for evaluation by the TacNet model
[see Fig. 1(a)]. Such a platform is envisaged as a standardized
easy-to-apply procedure for a wide range of robotic devices at
variant scales to acquire tactile perception [see Fig. 1(b)].

II. RELATED WORK

A. Simulation Frameworks for Vision-Based Tactile Sensors

In the literature to date, the two dominant groups of ViTac sen-
sors rely on 1) the intensity of reflective light and 2) relative posi-
tions of visual markers to deduce tactile information, represented
by GelSight [16] and TacTip [17] sensors, respectively. Recently,
advanced simulation tools have been emerging, which reduce
the burden in acquisition of real data for learning framework
and sim2real transfer approaches to facilitate simulated tactile

perception. For instance, to capture depth maps of in-contact
objects in GelSight images, Gomes et al. [18] used the robotics
simulator Gazebo, which provides a simulated depth camera.
Depth-based simulated images were then retouched with a
Gaussian filter and Phong’s rendering model to approximately
recreate the complex inter-reflection of light sources upon the
deformation of a membrane. Another sim2real technique applied
for GelSight-like sensors was reported in [19], where tactile
images were accurately generated with the help of physics-based
rendering. Wang et al. [14] established TACTO—a promising
open-source simulation layout harmonizing physics engine Py-
Bullet and rendering engine Pyrender, where rigid contacts were
employed for depth-map-based RGB tactile image rendering at
hundreds of frames per second. The feasibility of this simulator
was validated with two popular versions of finger-sized ViTac
sensors: hemisphere-shaped OmniTact [20] and DIGIT [21],
which provided tactile images equivalent to simulated interac-
tion from dynamic simulation. However, a limitation was that
cases involving a large deformation of skin upon ViTac contact
with its environment were not rendered properly. This issue is
crucial in complex contact scenarios and reduces the accuracy
of the sim2real transfer process.

Regarding marker-based ViTac sensors that are more com-
parable to our work, a bottleneck occurs in emulating the de-
formation of the soft skin by the movement of multiple mark-
ers upon external stimulation, which requires a comprehensive
modeling of contact mechanics and materials. Ding et al. [22]
built and emulated the elastic behavior of TacTip skin using
Unity physics engine to estimate pin locations. However, the
elastic properties of the skin were linearly approximated using
a custom linear elastic model. Church et al. [15] proposed
Tactile Gym that produces the virtual images of physical contacts
through depth imprints using a rigid contact model. Tactile
Gym was validated against finger-sized TacTip sensors of either
hemispherical or rectangular shapes, in which the gap between
real and virtual images was mitigated using a trained generative
framework. Alternatively, commercial FEM-based simulators
(e.g., Abaqus [23], [24]) offer a systematic way to accomplish
this challenge by dividing the soft body into many subelements,
which are then dynamically analyzed with hyperelastic material
models. However, extreme computational costs and inflexibility
of the commercial FEM simulators restrict the effective appli-
cation of these methods in real-time scenarios.

B. Simulation-to-Real Transfer by Adversarial Learning

Deep-neural-network-based vision systems learned from vir-
tual/synthetic images typically perform poorly when evaluated
on real visual inputs [25]. Differences between simulation and
real images are inevitable, which might involve unrealistic tex-
ture, color, and lighting conditions in the simulated results. Sev-
eral previous studies introduced randomization for such visual
aspects in simulation environments to narrow the sim2real gap,
which has been successfully applied to vision-based robotic
applications [26] and tactile sensing devices [18], [22]. Although
these techniques enable a trained model to be more robust
when transferred to a real dataset domain, they often require



LUU et al.: SIMULATION, LEARNING, AND APPLICATION OF VISION-BASED TACTILE SENSING AT LARGE SCALE 2005

the manual input of visual features to randomize and need to
be refined for specific tasks in unique environments. To address
this, recently, a concept of pixel-level domain-adaptation-based
sim2real transfer has been applied to the simulation framework
for a small-scale marker-based tactile sensor [15]. Here, the
researchers employed an auxiliary GAN [27] to translate real
marker-based tactile images into depth-based simulation ones,
on which deep learning agents were trained to perform specific
tasks. Despite having shown successes in transferring a handful
of high-level tasks with tactile sensory feedback, this method
employed real-to-simulation (real2sim) translation for virtual
tactile imprints (depth-based images), while real ones featured
white markers that encoded high deformation of artificial skin.
This may result in an inaccurate reproduction of the entire
deformed state of the artificial skin at one local imprint. In
addition, the accuracy of this real2sim translator on the entire
real image domain has not been thoroughly evaluated.

In this study, we propose a promising simulation framework
(SimTacLS) for ViTac sensors that is able to address the afore-
mentioned demerits. The main contributions are pictured in
Fig. 1 and highlighted as follows:

1) proposal of a simulation framework built from two ker-
nels: SOFA and Gazebo, with a justified pipeline that
allows a detailed investigation of marker-based ViTac
sensors of diverse shapes and sizes;

2) the deployment of a supervised-learning-based multiout-
put regression model (TacNet), which takes virtual tactile
images under various contact scenarios provided by the
above framework as input to perform 3-D skin-shape
reconstruction with high spatial–temporal resolution;

3) to mitigate TacNet’s incompatibility owing to using
real tactile images in actual sensor operation, a real-to-
simulation conversion approach (R2S-GN) is introduced;

4) the demonstration of the application of this sim2real learn-
ing approach to a large-scale tactile sensor (TacLink) in
tactile-based tasks using a custom-built robot arm with
TacLink as a forearm link.

III. SIMTACLS: A SIMULATION FRAMEWORK FOR A

LARGE-SCALE VISION-BASED TACTILE SENSOR

A. Hardware Design

This section describes the detailed mechanics of SimTacLS.
We chose our previously developed large-scale ViTac sensor
for the robot link (called TacLink [12], [13]), which uses the
displacement of visual cue markers to deduce tactile sensory
information, to demonstrate the proposed framework. The struc-
ture of this system is shown in Fig. 2(a). The details of the
geometrical specifications of the skin on a barrel shaped body
are: 260 mm high (or long depending on orientation); 3.5 mm
thick; 36-mm-diameter cross-sectional area at each end; and
53.5-mm-diameter cross-sectional area at the widest point (the
center). The body contains 256 white markers of diameter
φmarker = 5mm distributed on the inner wall of the soft skin. The
distances between the outermost row of markers to the adjacent
row and the small end of the skin are 15 and 17 mm, respectively.

Fig. 2. (a) Hardware architecture of barrel-shaped TacLink (see [12] and
[13] for more details on the geometrical design, constituent components, and
fabrication process). (b) Cylinder markers attached on the tactile skin will be
decomposed into two parts: marker bases and bodies. (c) Each tactile skin
element will be imported to SOFA as a topological map of (c) tetrahedron
elements for mechanical models and (d) triangular cells for visual models. Notice
that while the high quality of the skin mesh still remains in this mode, the meshes
for markers in visual model are refined significantly.

We have two reasons for using TacLink as the showcase in this
article: 1) the barrel-shaped sensor can be scaled to other parts
of a robot body, such as arms, legs, and chest; and 2) this shape
allows a rare setup of cameras (opposing), which is considered
challenging since large deformation of the skin may prevent
cameras from capturing images of all the markers (occlusion).
Therefore, the solution of this setup can be applied to many other
designs of marker-based ViTac sensors [see Fig. 1(b)].

B. SOFA Module: Skin Reconstruction and Modeling Strategy

Within the SOFA environment, a mechanical model of
TacLink skin comprises two separate models: bare skin and
markers. These are then consolidated to each other in the simu-
lation environment [see Fig. 2(b) and (c)]. Since SOFA allows
the simulation of multiple meshes (with different objectives),
the following discretization strategy is obeyed: 1) meshes for
studying mechanical behaviors and visualization (visual mod-
els) of the bare skin must be sufficiently fine (skin size element
is 12 mm); meanwhile, the contrary (marker size element is
1.5 mm) is applied for markers to reduce computational costs.
Then, the positions of each of the degrees of freedom (DoFs) in
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visual models are inherited from the mechanical models through
a mapping function ξm before exporting (.STL files) to the
Gazebo module.

1) Corotational FEM Approach: The softness of TacLink
skin derives from the inherently nonlinear property of soft mate-
rials that always pose a critical challenge to mechanical model-
ing. One can tackle this issue with hyperelastic material models
available in off-the-shelf simulation platforms [24], [28]. How-
ever, it requires tremendous effort to accurately identify all the
necessary parameters through either experimental or numerical
processes. Moreover, since we aimed to implement the proposed
framework in real-time robotic applications, a method with high
efficiency in computation was essential. In this work, connectiv-
ity among the vertices of nonoverlapping tetrahedron elements
obey a linear constitutive relationship (Hooke’s laws) as ascribed
by two parameters: Young’s modulus E and Poisson’s ratio ν.
E was experimentally identified as 0.1 N/mm2 and ν was set at
0.49 [29]. To prevent any unrealistic simulation results due to this
linear assumption, especially with large deformations (not only
large displacement but also rigid rotation), a corotational FEM
formulation was leveraged (see [30] for details). This allows a
realistic simulation that captures the geometric nonlinearity of a
hyperelastic material (i.e., small stresses produce large strains)
in a cost-effective manner.

2) Dynamic Analysis: The generic dynamic equation for a
deformable volume is shown as follows:

M(q)q̈ = Fext(t)− Fint(q, q̇) + JTλ (1)

whereq ∈ R
n is the 3-D position of element nodes (correspond-

ing to N DoFs), M(q) is the mass matrix, Fext(t) denotes the
external forces (e.g., gravity) at each time step t, and Fint(q, q̇)
represents internal forces upon the system state. Equation (1) is
integrated over a specific time interval [t1, t2], thus dt = t2 − t1,
using the backward Euler integration scheme [31]

M(q̇2 − q̇1) = dt
(
Fext(t2)− Fint(q2, q̇2) + JTλ

)
. (2)

Substituting the linearization of the internal forces Fint(q2, q̇2)
by using Taylor series expansion with the first-order approxima-
tion (see [32] for more details) and two relations q̇ = q2 − q1 =
dtq̇2 and q̈ = q̇2 − q̇1 into (2) yields(

M+ dt2K+ dtC
)︸ ︷︷ ︸

A

q̈︸︷︷︸
x

= −dt2Kq̇1 + dt
(
Fext

2 − Fint
1

)︸ ︷︷ ︸
b

+ dtJTλ (3)

where Fext
2 is the external force at the next time step; K = ∂Fint

∂q

andC = ∂Fint

∂q̇ are stiffness and damping matrices, respectively.

The only unknown factor is JTλ, which represents the contri-
bution of tactile interaction under the form of constraints. The
Jacobian matrix J(q) = ∂ξ

∂q gathers the normal and tangential
constraint (i.e., contact forces) directions of λ—equivalent to the
magnitude of contact forces projected to the mapped DoF. Note
that the above contact responses obey a combination of Sig-
norini’s frictionless contact law [33] and Coulomb’s frictional
law [34]. This is mathematically expressed by the following

complementarity condition:{
In contact: Δn = 0⇒ λn > 0
No contact: Δn > 0⇒ λn = 0

(4)

where Δn and λn represent the distance between two contact
opponents and the contact force measured along the normal
direction n, respectively. Once a contact is well-detected, the
contact response JTλ is computed to determine the above con-
dition. A more in-depth explanation of this particular procedure
can be reviewed in [32].

To solve linear equation (3), there are several approaches of-
fered by the SOFA framework. We leveraged the sparse LDLT

factorization method [33] to decompose matrix A, where D is a
diagonal matrix and L is a sparse lower triangular part of matrix
A. Although this approach is quite costly, the reliability of the
simulated mechanical behavior of the soft body (i.e., tactile skin)
is assured.

C. Virtual Tactile Image Acquisition

The process for generation and acquisition of virtual (sim-
ulated) tactile images is performed using the combination of
the Gazebo simulator and the Robot Operating System (ROS).
The TacLink sensor is modeled as a robotic link using Unified
Robot Description Format (URDF),2 in which the geometric
relations between sensor parts, such as housings and cameras,
are defined precisely as in the design of a real device. In the
URDF description, the Gazebo sensor plug-in providing the
camera type of Wide Angle Camera Sensor is installed
to enable virtual cameras to render images of the artificial skin
(tactile images). To capture realistic images of skin deformation,
the topological meshes of the sensor’s soft skin and marker (.STL
format) generated from SOFA simulation are updated at each
time step and encoded in the SDF format3 to communicate with
the Gazebo environment .

D. TacNet-Based Skin Shape Reconstruction

TacNet was developed to reconstruct, from a pair of tactile
images, the geometrical shape of soft skin deformed by external
forces in order to deduce high-level tactile perception. This
vision-based reconstruction problem can be formulated as a mul-
tioutput regression task: given a pair of marker-featured tactile
images I = {I1, I2}, where I1 and I2 are RGB images of size
640× 480× 3 pixels, the network estimates the displacement
vectors (Destimated) of nodes N (|N | = 707 nodes) of a surface
mesh representing the soft sensor skin (see Section III-B)

Destimated,i := Xi −X0,i ∀i ∈M (5)

whereXi ∈ R
3 is the 3-D position vector of one active/free node

i ∈M, whereM is a set of free nodes (|M| = n = 585 nodes),
and X0,i ∈ R

3 are the coordinates of the respective node under
the original or nondeformed state of the artificial skin. Thus,
from the estimated displacement vectors Destimated and original
nodal positions X0, the skin shape can be reconstructed as X =

2URDF is an XML format used by the ROS to describe a robotics system.
3Simulation Description Format: http://sdformat.org/

http://sdformat.org/
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Fig. 3. TacNet concept and architecture. It maps a pair of virtual tactile images
Isim to the displacements of free nodes Destimated from which the shape of
artificial skin could be reconstructed. The skin is represented by a topological
mesh consisting of fixed nodes (denoted by pink dots) and free ones (the other
vertices of triangular cells). The backbone of TacNet is constructed from the
Unet network with the modification of downsampled input signal (256, 6) and
dense output layer (1755) where every three neurons represents the estimated
displacement vector of one free node Destimated,i.

Destimated +X0, with the positions of all fixed nodes always
unchanged Xi = X0,i , ∀i ∈ B (B is a set of fixed nodes, such
that N =M∪B).

1) TacNet Architecture: The TacNet architecture is adapted
from proven Unet convolution networks [35]. Basically, TacNet
consists of a contracted convolution path connected with a re-
verse upconvolution one via skip connections and then followed
by two fully connected (FC) layers (see Fig. 3). For the input
layer, we concatenate the two tactile images I, downsampled to
256× 256, to form a six-channel input visual signal. Moreover,
the output signal, activated by the two last FC layers, is defined
by a dense single layer with 1755 neurons to represent the
estimated displacement vectors Destimated, which means that we
consider every three adjacent neurons as a displacement vector.

2) TacNet Training and Loss Function: TacNet is trained
completely on a simulation dataset with the input data Isim

(pair of images obtained from simulated TacLink cameras) and
corresponding output labels DFEM (ground-truth displacement
vectors) generated, respectively, in Gazebo/ROS and SOFA
environments (see Sections III-C and III-B). We apply the mean
squared error (MSE) loss as an objective function to minimize
the differences between the ground-truth and estimated displace-
ment vectors (DFEM,Destimated) and to optimize the weights of
TacNet Tθ

θ∗ = argmin
θ
LMSE[DFEM,Tθ(Isim)] (6)

where Destimated = Tθ(Isim) and LMSE(·) is MSE loss, given by

LMSE(DFEM,Destimated)

=
1

3n

∑
i∈N

∑
j∈{x,y,z}

(djFEM,i − djestimated,i)
2 (7)

where dji ∀j ∈ {x, y, z} are the components of displacement
vector Di at the respective skin node i ∈M along the x, y,
and z axes. In fact, the MSE loss in (7) is derived to compute
the difference in every vector component (or output neurons)
to encourage the learning of both intensity and direction of

displacement vectors. For the optimization (6), we use iterative
stochastic gradient descent optimizer with the experimentally
tuned learning rate of 0.015.

E. Real-to-Simulation Generative Network

The main purpose of the R2S-GN is to transform real tactile
images (Ireal) into ones (transformed images Itf) that resemble
visual inputs of the simulation dataset (Isim) before they are
fed to TacNet, so the performance of TacNet-based 3-D shape
reconstruction is maintained in real-world deployment. For this
purpose, the R2S-GN is trained in an adversarial manner, where
it plays a role as a generator in a traditional GAN, competing
against a discriminator in order to achieve its best in the trans-
formation task.

1) Network Architectures: We exploited the adapted version
of the U-Net convolutional network and the PatchGAN model,
as described in [36], for the architecture of R2S-GN generator
(Gφ) and discriminator (Dψ), respectively. Gφ takes as input the
downsampled real images (Ireal, 256× 256× 3) on a encoder
path and outputs the transformed counterparts (Itf) on a reverse
decoder path. Meanwhile, the discriminator (Dψ) receives a
256× 256× 3 pixel input image, and the network classifies
whether the images inputted is real or fake . Details of the
network parameters for Gφ and Dψ architectures can be found
in [36].

2) R2S-GN Loss Function: We propose a hybrid loss func-
tionLR2S-GN that is used to train the R2S-GN generative network
(Gφ). This loss function comprises three terms, including con-
ditional GAN (cGAN) adversarial objective, �1 distance, and
structural similarity (SSIM) loss.

a) Image appearance loss: Inspired by Zhao et al. [37], we
introduce an appearance loss that combines �1 distance with the
SSIM metric (for image quality quantification) [38]. This loss
function, which evaluates on a pixel-by-pixel basis, is defined
to match the appearance of the fake transformed images Itf with
the real simulation ones Isim, as well as to ensure SSIM between
them. This is vital to generate images with the same geometric
perspective as simulation ones, in order to maintain the skills
of simulation-trained TacNet. Thus, for a given batch of one
training sample, this loss is given as

Limg = α ‖Gφ(Ireal)− Isim‖1 + β
1− SSIM(Gφ(Ireal), Isim)

2
(8)

where we apply a 11× 11 Gaussian kernel for the computation
of the SSIM metric.

b) Adversarial loss: In addition to the appearance loss, we
adopt the cGAN objective [36] for an adversarial loss term. For a
given real tactile image Ireal, the adversarial loss for the R2S-GN
Gφ can be expressed as

Ladv = log (1−Dψ (Ireal,Gφ(Ireal))) (9)

where Dψ, besides observing the transformed version of tactile
image Itf = Gφ(Ireal), is conditional on the input of Gφ, par-
ticularly Ireal. This conditional discriminator has been shown
to improve the performance of numerous image translation
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Fig. 4. Training scheme for the R2S-GN model, mostly following the pro-
cedure described in [27], however, with the modification for the inclusion of
R2S-GN loss (see Section III-E3 for details).

tasks [36]; thus, we applied this concept in our real2sim network.
Intuitively, the R2S-GN Gφ tries to minimize this objective
function by generating the transformed image that can fool
the adversarial discriminator Dψ into predicting it as a real
simulation image. As a result, the overall loss objective for
R2S-GN Gφ is the combination of appearance loss as well as
the cGAN criteria

LR2S-GN = Limg︸︷︷︸
Appearance loss

+ γ · Ladv︸ ︷︷ ︸
Adversarial loss

(10)

where we set the hyperparameters α = 100, β = 200, and γ =
1, which are tuned experimentally.

Finally, for training the adversarial discriminator Dψ , we
use the cGAN objective as described in [36]. For one training
sample, the discriminator loss is given as

LG = log (1−Dψ(Ireal, Isim)) + logDψ (Ireal,Gφ(Ireal)) .
(11)

The second term characterizes the adversarial training behavior
where the discriminator tries to maximize the R2S-GN’s ad-
versarial objective [see (9)]; meanwhile, the R2S-GN attempts
to minimize it. The overall loss [see (11)] indicates that the
discriminator would do its best at discriminating the transformed
images Itf with simulation ones Isim, which, in turn, penalizes the
R2S-GN to generate Itf that more closely match the appearance
of Isim.

3) R2S-GN Training: We follow the typical procedure of
adversarial GAN training [27] for optimizing the weights of the
R2S-GNGφ (see Fig. 4). Specifically, for discriminator training,
we set its output label to a positive class (real ) given that the input
is a simulation image, and to negative class (fake) provided that
the input is a transformed one. As for the R2S-GN, in addition
to computation of the Limg loss, the output label of Dψ is set to
the real positive class in order to promote the adversarial Ladv

loss [36]. For the learning process, we used the Adam optimizer
with linear learning rate scheduling [39], initialized at 0.0002
and set to decay at the 100th iteration out of a total of 200
training steps.

IV. LARGE-SCALE TACTILE PERCEPTION METHODOLOGY

Large-scale ViTac sensors are suitable to offer multipoint
physical interactions, which embrace new possibilities for tactile

interfaces and make them unique compared to their small-sized
counterparts (e.g., tactile fingertips). Among information that
can be extracted from the multipoint stimuli, the identification
of contact locations on an artificial skin body has found practical
use in robotics tasks, such as providing feedback signals for a
collision handling framework [40]. Therefore, in addition to a
simple method for contact event detection (see Section IV-A), we
developed an algorithm to identify multiple contact locations on
a large-scale skin (see Section IV-B), which are reasoned from
the TacNet model.

A. Touch Sensing

The detection of touch/contact events is considered to be
fundamental in safety-critical robotic systems [40]. Here, we
present a method to extract contact detection signals based on
the recognition of skin deformation.

The contact detection problem can be formulated as a bi-
nary classification task where given the displacement vectors
Destimated estimated by TacNet (5), we assign a contact detection
signal, which is 0 for data without contact and 1 for data
with contact detected. Thus, the contact detection signal can
be derived as

CD =

{
1, if ∃i : ‖Destimated,i‖ ≥ εc

0, otherwise
. (12)

In other words, for each contact detection, we set a contact de-
tection threshold εc on the estimated displacement magnitude of
free skin nodes ‖Destimated,i‖ ∀i ∈M, where εc depends mainly
on the accuracy of TacNet estimation, which would influence
detection sensitivity and accuracy. The detection threshold is
determined such that contact detection performance reaches
a good compromise between precision and recall, which are
the metrics of a general binary classifier. We use the simu-
lation dataset to determine the detection threshold, which is
expected to transfer well to the distribution of real data. The
results of this contact classifier are discussed in more detail in
Section V-D.

B. Multipoint Contact Localization

This section presents an algorithm that can identify the contact
positions at multiple points on the sensing link. This detection
method assumes that any contacts occurring between the sensor
skin and external objects are point contacts, which is considered
to be a reasonable assumption in practical applications [40]. In
general, the algorithm applies the concept of graph-theory-based
connected-component labeling [41] to extract contact regions,
which we named contact region labeling (CRL), from which
the contact positions are identified. Here, we modeled the mesh
of artificial skin as an undirected graph, G = (V, E), whose
vertices represent the mesh nodes (|V| = |N | = N ) and contain
information on the displacement vectors estimated by TacNet
(Destimated ∈ R

3N ). Besides this, every graph node contains
information of a fixed radial vector pointing toward the central
axis of the skin to determine the inward deflected nodes. Thus,
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Algorithm 1: Multiple-Point Contact Localization.

Input: G: skin graph defined by (V, E); X0: initial nodal
positions; Destimated: estimated nodal displacement vectors;
N: nodal radial inward vectors
Output: Xc: multiple contact positions (xc1, . . . ,x

c
L)

1: Initialize: εc � contact threshold
2: s← newList
3: for each node vi in V do
4: if ‖Destimated,i‖ ≥ εc and dsim(Destimated,i,Ni) > 0

then si ← 1 �assign nodal contact signals (14)
5: else si ← 0
6: end if
7: end for
8: y← CRL(V, E , s) � obtain a list of contact region

labels
9: (R1, . . . ,RL)← sortContactRegions(y) �

see (16)
10: (i∗1, . . . , i

∗
L)←

searchContactNodes(R,Destimated) � (see 17)
11: xcl ← X0,i∗l

for all l ∈ {1, . . . , L}
12: return list of contact positions (xc1, . . . ,x

c
L)

13: function CRL(V , E , s) � contact region labeling
14: l← 1 � initialize contact region label
15: y← newList
16: for each node vi in V do
17: if si = 1 and yi = ∅ then
18: y← DFS(l, vi, E , s,y)
19: l← l + 1
20: else if si = 0 then yi ← 0
21: end if
22: end for
23: return list of contact labels y
24: end function
25: function DFS(l, vi, E , s, y) � depth first search
26: if si = 0 or yi not ∅ then return y
27: end if
28: yi ← l
29: for each neighbor node vj of vi in E(vi) do
30: y← DFS(l, vj , E , s,y)
31: end for
32: end function

we define the radial vector at every node as

Ni :=
[
0 0 xz0,i

]�
−X�0,i ∀i ∈ N (13)

where xz0 is the z-component of nodal positions X0 in the
undeformed state.

To run CRL for the extraction of distinct contact regions,
we need to determine which nodes of the skin are likely to
be experiencing contact. Accordingly, we define N -tuple of
binary nodal contact signals s = (s1, . . . , sN ) ∈ Z

N
2 , where its

element si holds a binary value si ∈ {0, 1} such that si = 1
indicates that the corresponding node i ∈ N is in contact and
definitely lies in one contact region; otherwise, si = 0 signifies

that the given node remains intact. Specifically, the nodal contact
signal for each node i ∈ N is derived as

si =

{
1, if ‖Destimated,i‖ ≥ εd ∧ dsim(Destimated,i,Ni) > 0

0, otherwise
(14)

where

dsim(Destimated,i,Ni) =
Destimated,i ·Ni

‖Destimated,i‖ ‖Ni‖
. (15)

In other words, a node is considered to lie in a contact region if
its nodal displacement exceeds a constant threshold εd and the
direction of its displacement vector has to be pointing toward the
skin central axis. Under contacts mostly due to pushing/pressing
actions, the latter condition helps to restrict contact regions
to those that contain nodes deflecting inwards, as opposed to
those regions that bulge out. This is measured by the directional
similarity term dsim ∈ [−1, 1] (15), which, in fact, is cosϕi
(where ϕi is the angle between two vectors Destimated,i and Ni).

Given the skin graph G and nodal contact signals s, we
perform the CRL procedure to extract possible multiple distinct
contact regions (see Algorithm 1:CRL function). This procedure
employs depth-first search (DFS) to traverse across vertices V
of graph G that contain the corresponding nodal information
of s. On the search path, it selectively assigns a contact region
label l ∈ {1, . . . , L} (L is the number of contact regions) to
every node that holds the signal si = 1 such that a cluster of
contacted nodes (or a contact region), separated from others by
undeformed nodes (si = 0), shares the same region label l. As a
result, we can obtain a set of labels y = (y1, . . . , yN ) ∈ Z

N
L+1

whose element yi ∈ {0, 1, . . . , L} corresponds to the region
label of node i ∈ N , and yi = 0 marks nodes inside the un-
deformed region. From y, we can extract contact regions that
are represented by the node indices. Thus, for a given contact
region Rl that has the region label l, we have

Rl = {i ∈ N | yi = l} , ∀l ∈ {1, . . . , L}. (16)

Finally, for every single contact region Rl, we search for the
node i∗l ∈ Rl that maximizes the displacement magnitude and
consider it as a location where a contact occurs

i∗l = argmax
i∈Rl

‖Destimated,i‖ ∀l ∈ {1, . . . , L}. (17)

From that, contact positionsXc = (xc1, . . . ,x
c
L)
� ∈ R

3L can be
identified from the extracted contact regions

xcl = X0,i∗l
∀l ∈ {1, . . . , L}. (18)

In addition, corresponding contact depths d̂(xcl ) can be derived
as

d̂(xcl ) =
∥∥Destimated,i∗l

∥∥ ∀l ∈ {1, . . . , L}. (19)

The step-by-step algorithm for multipoint contact sensing is
described in Algorithm 1, whose complexity mainly depends
on the size of the skin graph O(|V|+ |E|). In addition, the
spatial resolution is defined by the fineness of the constructed
skin mesh, which poses a tradeoff between the resolution and
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TABLE I
COLLECTED DATASETS: DATASETS USED IN THIS ARTICLE FOR MODEL

TRAINING AND EVALUATION

computational costs; the greater the resolution, the more the
computational time. Moreover, the assumption of point contact
can be relaxed if contacts induce concave deformation of the skin
surface, whereby the detector yields an approximated contact
position at the node that was displaced the deepest; however,
detection accuracy would fall as the contact plane extended.
Finally, in cases where regions of multiple contacts overlap such
as an event when two discrete contact points are sufficiently
close, the detector might deduce the different regions to be a
single large contact area. This sensing behavior, mostly affected
by the distance between two contact points and the selection of
threshold εd, along with localization accuracy is discussed in
Section V-E.

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed SimTacLS
framework, we conducted some experiments on tactile per-
ception. We used a desktop PC (AMD Ryzen Threadripper
3970X Processor) with GPU acceleration (RTX 8000, NVIDIA)
for model training and inference. Demonstrations are avail-
able for review in supplementary video associated with this
article.

A. Data Collection

In this article, we collected several datasets from simulation
and actual models for training and to assess the feasibility of
SimTacLS. The details are listed in Table I. The contact locations
were set among free nodes M; thus, the total sampled points
for the single − contact dataset was 585. To test whether the
method could achieve tactile perception in complex scenarios
with poor prior experience, 500 contact groups consisting of
two arbitrary points among M were made to produce the
double − contact dataset. An experimental setup with an iden-
tical reference coordination system, as illustrated in Figs. 2 and
5, was constructed to collect real tactile images. The experiment
included three motorized linear stages (Suruga Seiki Co., Japan),
a rotating motor (Dynamixel XH430-W350-R, ROBOTIS, Inc.,
USA), and a stepping motor controller (DS102, Suruga Seiki
Co., Ltd., Japan), fixed on a testbed (see Fig. 5). TheX-axis stage
(PG750-L05AG-UA) drives a spherical-head indentor (12 mm
diameter) designed to push one node at a time to the desired
contact depth on the skin. The contact locations on the skin outer
surface were achieved by horizontal movement of the indentor
and the rotation of the TacLink sensor, facilitated by a Z-axis

Fig. 5. Setups for data collection in (a) simulation and (b) real world. (a) SOFA
environment. (b) Actual setup.

linear carrier (KZS18300) and Z-axis rotating motor, respec-
tively. Meanwhile, the Y -axis stage was preadjusted in advance
to ensure that the nominal axis of the indentor intersects with
the Z-axis of the reference coordinate system (i.e., centerline of
the TacLink sensor).

B. Image Transformation With R2S-GN Loss

The performance of the R2S-GN was evaluated by the similar-
ity between pairs of transformed and simulation (baseline) im-
ages in terms of spatial image structure. We measured the SSIM
index and the complement of per-pixel root mean square er-
ror (pixRMSE = 1− pixRMSE) of the simulation–transformed
image pairs. In addition, we compared the performance of the
R2S-GN model learned with R2S-GN training objectiveLR2S-GN

[see (10)] and the one trained using solely adversarial loss Ladv

and the other with Ladv-L1 := Ladv + LL1 (where LL1 is the
�1-distance loss). The R2S-GN was trained with a total of 18 640
pairs of single-contact actual-simulation images and 4780 image
pairs that capture both single (4660 pairs) and double contacts
(120 pairs) was devoted for evaluation.

Fig. 6(a) shows the SSIM of tested simulation images with real
images transformed by three variants of the R2S-GN (trained,
respectively, by the three aforementioned losses) and expresses
the variable of their resemblance according to increased contact
(touch) depth. In fact, the LR2S-GN-based R2S-GN generates
images that are far more similar to the simulation baselines,
providing an average SSIM of 0.96 and an average pixRMSE
of 0.95 at 20 mm contact depth, compared, respectively, to
0.91 and 0.90 of the Ladv-based transformation model. Over the
observed range of contact depth dc ∈ [1, 20], while the former
model shows a slight drop in both SSIM and pixRMSE metrics
(i.e., around 3.5%), the latter one shows a more significant (7%)
drop in SSIM. Moreover, Fig. 6(b) displays representative tested
samples of single- and double-contact tactile images with the
contact depth of 15 mm. It shows that the unseen tactile images
can be generalized and generated well by the R2S-GN even when
the model is never trained on the double-contact images, and it
once again confirms the effectiveness of the proposed R2S-GN
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Fig. 6. R2S-GN model evaluation with various training losses. (a) Quantitative
simulation–transformed image similarity measured by SSIM and complement
of pixRMSE metrics. Spatial similarity between the transformed and real

simulation images are measured by per-pixel SSIM and pixRMSE metrics
(the higher the values, the more the similarity between the compared pairs of
images). The graphs present the better performance of the R2S-GN as trained
with the proposed LR2S-GN loss compared to the other two variants of losses.
(b) Representative transformed images (Itf) with variant training objectives
comparing to the corresponding ground-truth simulation (Isim) and real images
(Ireal). Visualization of transformed images in the scenarios of single and double
contacts (dc = 15 mm).

loss. In the next subsection, we further evaluate the effectiveness
of variant RS2-TN models in addressing the sim2real problem.

C. Sim2Real Transferability of Contact Depth

The performance of the TacNet-based shape reconstruction
was verified by evaluating the measurement error of the local
contact depth [see (19)], both in simulation and real datasets to
prove sim2real effectiveness. For evaluation, Unet-based TacNet
with 2048 neurons for each of the last two FC layers was
employed, since it was shown, through fivefold cross validation,
to outperform other model backbones, such as VGG and ResNet
in terms of inference accuracy, speed, and memory usage (see
Fig. 7). The used TacNet model was completely trained on the
simulation dataset including both single- and double-contact
images (28 055 pairs of virtual tactile images), in which 20% data
of each contact type were withheld as a test fold for validation.
For sim2real evaluation, we experimented on a subset of real
double-contact images and a full set of real single-contact images
corresponding to the simulation test fold (see Table I).

The experimental results showed that measurement errors
increased with true contact depth (dc) in the case of simula-
tion and LR2S-GN-based translated visual inputs, while pure real
ones, without passing through the R2S-GN model, experienced
significant errors, yielding estimated values unchanged [see
Fig. 8(a) and (b)]. The absolute errors at dc = 20 mm were
below 2 and 4 mm, which approximate to full-scale errors
10% and 20% (with FS 20 mm) for simulation and translated
inputs, respectively. Fig. 8(c) shows that the LR2S-GN-based

Fig. 7. TacNet performance by various network configurations. (a) TacNet
performance by configurations. Fivefold cross-validation accuracy of TacNet by
varying number of neurons k per the last two FC layers and backbone network
architectures. Under the same training conditions, Unet-based TacNet achieves
better performance compared to that of the counterparts (smaller RMSE value is
better). (b) Specifications of Unet-based TacNet with various number of neurons
k. Based on the specifications, it is reasonable to adopt 2048 neurons for the last
two FC layers of Unet-based TacNet, which strikes a balance between accuracy,
memory usage, and inference time.

R2S-GN model was superior to the two other variants trained by
Ladv and Ladv-L1, which reduces the full-scale errors of around
25% and 10%, respectively, at dc = 20 mm. In addition, we
showcase the visualization of the skin shape reconstruction on
two representative scenarios of single- and double-point contact
with the depth dc = 15 mm (see Fig. 9). A highly similar
sensing pattern between simulation and real (via LR2S-GN-based
R2S-GN) samples was observed in the case of single contact,
with an absolute error of around 1.5 mm. In the case of double
contact, the mean absolute errors at the two contact patches were
1.31± 0.65 mm and 2.92± 0.50 mm for the virtual and trans-
lated real input, respectively. The occurrence of greater sim2real
discrepancies in the double contact was because the R2S-GN had
not been trained on double-touch data, which probably results
in greater dissimilarity in image structure, especially at large
contact depths.

It is worth noting that the sensing performance (specifically,
the recognition of contact depth) is dependent on regions of the
skin. We conducted an experiment, where the contact was made
on various locations (ten locations) along a longitude line of the
skin. At each contact location, two contact depth values of 5
and 10 mm were given. The measured data (contact depth value
inferred from real images passing through the LR2S-GN-based
R2S-GN) and the ground truths are shown in Fig. 10, revealing
that the sensitivity decreases at the equatorial area of the skin.
The same issue was actually found in the previous research [11],
in which the detection error of around 7% of full scale with
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Fig. 8. Evaluation of contact depth accuracy and its sim2real transferability, using the proposed sim2real method. (a) Measured contact depth versus true value.
(LR2S-GN-based R2S-GN was used). (b) Absolute measurement error with increased contact depth. (LR2S-GN-based R2S-GN was used). (c) Estimated contact
depths with various input images compared against true values of 10, 15, and 20 mm.

Fig. 9. Visualization of TacNet-based 3-D skin shape reconstruction in the
scenarios of single and double contacts with true contact depth at 15 mm. (a)
Skin reconstruction with single contact (dc = 15 mm). (b) Skin reconstruction
with double contact (dc = 15 mm).

the careful calibration of cameras. Therefore, the accuracy can
be improved by thorough calibrations in which calibration pa-
rameters would be identified differently for respective contact
regions. By doing so, each fabricated sensor needs its own
calibration of cameras, even though the design is similar. In this
research, our proposed method does not require any calibration,
thus accommodating unlikeliness in the fabrication process. One

Fig. 10. Evaluation of contact depth estimation at different contact regions on
the tactile skin (estimated on real images via LR2S-GN-based R2S-GN).

can consider using our method with calibrated parameters to
increase the accuracy of the sensing operation. Last but not
least, while the contact depth accuracy considerably depends
on regions of the skin, this problem is not seen in the context
of contact localization. In fact, as presented in Section V-E, the
variation of localization errors is not significant when evaluated
on a wide range of contact regions.

Overall, in the context of sim2real transfer for large-scale
ViTac sensing, to our knowledge, the obtained results in this
article set the benchmark for further development, and the re-
construction errors are within an acceptable range compared to
previous work [11], [12].

D. Sim2Real Transferability of Contact Detection

This section examines whether the performance of contact
detection learned from virtual data, specifically that are inferred
from TacNet, can be transferred into the real data domain with
the help of the R2S-GN model. We initially examine a suitable
contact detection threshold ε∗c that would maximize the detec-
tion capability using the virtual image dataset. The selection
was conducted based on the analysis of the precision–recall
tradeoff [39] of the touch classifier over a finite range of the
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Fig. 11. Evaluation of contact sensing task. (a) Precision–recall tradeoff of the
touch classifier evaluated on the virtual images. (b) Contact detection accuracy.
The accuracy of contact classifier on different types of input images, with the
decision threshold of 0.6.

decision threshold (εc). Based on the precision–recall plot [see
Fig. 11(a)], it is reasonable to use a contact threshold value
of 0.6 mm for sim2real evaluation, which maximizes contact
sensing performance with 100% recall and precision.

The accuracy of the contact detection evaluated using test
simulation dataset and corresponding real images is presented
in Fig. 11(b). All the pure real images capturing the nondeformed
skin are mistakenly classified as contact events (95% precision).
However, the result [see Fig. 11(b)] reveals that this sim2real
problem could be addressed by the intervention of the R2S-GN.
In fact, real images passing through the R2S-GN model allow
successful transfer of the threshold learned from the simulation
to the domain of real images, in which the best precision and
recalled values are retained (i.e., 100%).

E. Sim2Real Transferability of Double-Contact Localization

This subsection examines the accuracy and transferability of
contact localization in the scenario of double contact. Three
contact groups (groups I, II, and III) distinguished by the vertical
distance between the two random contact points [180, 140, and
100 mm, respectively, as shown in Fig. 12(a)] were tested. For
each group, based on our proposed localization method (see Sec-
tion V-E), we determined from SOFA simulation data (DFEM) at
what range of contact depth, the two separated contact areas were
recognized with respect to the threshold εd [see (14)]. Group I
showed the largest detection range followed by group II, and
detection range increased with increase in threshold increases
[see Fig. 12(a)]. Furthermore, Fig. 12(b) compares these re-
sults with estimated displacement data (Destimated) inferred from
virtual tactile images (second column) and real tactile images

Fig. 12. Study of the sim2real transferability of two-point contact localization.
(a) Range of contact depth permitting successful two-point detection versus
decision threshold (εd), evaluated on SOFA ground-truth data (DFEM). (b)
Sim2real comparison of contact depth range inside which the two-point contacts
can be discriminated versus contact groups. (εd = 9 mm).

(third column) at εd = 9mm, which yields the highest two-point
detection accuracy. Except for Group I, which is still considered
acceptable in both cases, the detection range of Group II was
significantly down, while contacts among Group III (two-point
distance is relatively close) were detected as one large contact
area. The error came from the fact that our method utilized the
displacement of nodes located not only in the actual contact
sites but also in the regions surrounding them or the contact
regions. That causes a narrow two-point detectable range of
contact depth when εd is small [see Fig. 12(a)]. Other reason
is that the occlusion is easier to occur when two points are close
together. If two points share the same height or bias from a
vertical direction, such situations are anticipated less critical
than the tested cases due to the fact that every horizontal cross
section of TacLink skin is parallel with image planes, so we
could expect a clear vision of the contact areas (less occlusion).

Fig. 13(a) shows averaged localization errors between esti-
mated and actual in-touch positions using simulation and trans-
formed real tactile images for Groups I and II, while Fig. 13(b)
visualizes the localization task in action atdc = 15 mm. Overall,
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Fig. 13. Evaluation of two-point contact localization accuracy. (a) Double-
point contact localization accuracy of simulation and transformed real dataset.
(b) Demonstration for double-contact localization with transformed real samples
for Group I and II (dc = 15 mm).

the obtained results revealed the feasibility of sim2real transfer
for multipoint contact localization. However, some sim2real
gaps remain due to the fact that TacNet was generally trained
with a poor double-touch database, and the R2S-GN did not
possess prior relevant knowledge and was not powerful enough
to handle such complex interactions.

VI. APPLICATIONS OF LARGE-SCALE TACTILE SENSING

This section describes two trial cases, including nonprehensile
manipulation and haptic interface, for TacLink and its trans-
ferred tactile information of multipoint contact depth and contact
location. In order to perform the tasks, a large-scale TacLink
sensor utilized as a robot link (forearm) was attached to the elbow
joint of a three-DoF custom-built robot arm [see Fig. 14(a)].
Note that spatial data defined in this section are all referenced
to the fixed space frame {s} of the robot base, excluding those
specified by left superscripted indices.

A. Nonprehensile Manipulation by Whole-Arm Pushing

This section showcases how a three-DoF robot arm could
push an object toward a goal facilitated by an attached TacLink
sensing device providing the function of contact location. For
simplicity, we restricted the pushing task to be performed on
a ŷsẑs plane of frame {s}. To perform the task, we employed
simple proportional controllers that obtain feedback of the 3-D
position of a pushed objectxobject ∈ R

3 determined from contact

made with TacLink, used to compute the desired spatial velocity
cVd ∈ R

6 with reference to the contact frame {c} to guide the
object toward the preset goal. The {c} frame, represented by
rotation matrix Rc, was defined to have the origin at the contact
location xc [retrieved from (18)], the ŷc and ẑc axes pointing
along the outward normal of the contact plane, and along the
z-axis of the TacLink frame (see Fig. 5), while the x̂c-axis
complements the others by the right-hand rule. Given the object
position (xobject ≡ xc), and goal locationxgoal ∈ R

3, the pushing
task was controlled such that the pushing direction npush was
perpendicular to the contact plane (ŷc ≡ npush)

npush :=
xgoal − xobject

‖xgoal − xobject‖
. (20)

Therefore, the required angular velocity ωd ∈ R
3 to achieve the

desired pushing direction can be devised as

ωd = kωω̂dθ̄ (21)

where kω > 0 is a proportional gain of angular velocity, and
ω̂dθ̄ ∈ R

3 denotes the exponential coordinates of a rotation
matrix R̄ := Rot(ω̂d, θ̄) = RpushR

T
c ∈ SO(3), where Rpush :=

[x̂s, npush, x̂s × npush], that rotates the contact frame {c} to-
ward the pushing direction. In addition, since the contacted
object would deliberately be pushed alongnpush, the commanded
linear velocity can be derived as

vd = kv(xgoal − xobject) (22)

On top of that, respecting a typical safe human–robot interaction
scenario, we imposed a condition on the proposed pushing
control to halt the robot motion in the event an unplanned contact
(external contact) occurred, i.e., other than with the target pushed
object. Hence, assuming that there always exists one contact with
the target object, we have

cVd =
{
[0]6×1, if L ≥ 2

RT
c [ωd, vd]

T, otherwise
. (23)

Finally, the desired twist cVd was mapped to commanded joint
velocity θ̇ ∈ R

3 through Jacobian cJ ∈ R
6×3 at the contact

point.
The results of the described contact-based pushing experi-

ment are shown in Fig. 14, wherein the goal position was set
as xgoal = [−0.01, −0.17, 0.73]T, and the proportional gains
were experimentally tuned as kv = 0.12 and kw = 0.35. During
the pushing trial, the primary contact with the object (i.e., a
water-filled bottle) maintained a relatively stable contact inten-
sity of around 14 mm, except for when an unplanned contact
occurred [see Fig. 14(b)]. Once a human suddenly touched the
TacLink, triggering a secondary (external) contact phase, all
robot motions halted, which resulted in a goal error (defined
as ‖xgoal − xobject‖), and the time-dependent object position
(xobject) remained unchanged [see Fig. 14(b) and (c)]. Over
the course of time, the pushed object gradually reached the
preset goal, which took around 60 s for the entire process.
However, there remained a small degree of settling error along
the z-direction, resulting in more or less 0.05-m goal error. This
might be addressed by incorporating the integral term to the
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Fig. 14. Experiment of contact-based object pushing. An object, whose position is identified through contact with the TacLink, is guided to a goal location
xgoal = [−0.01,−0.17, 0.73]T on a yz plane of a table via pushing. When unexpected contacts (external contacts) occurred, the robot motion was temporarily
halted and then resumed after the external contact broke. The observations of the external contacts are green shaded. The demonstration can be found in the video
at https://youtu.be/NN2u8YBLITY. (a) Video stills of contact-based object pushing experiment with the possible occurrence of two-point contact. (b) Time log of
contact depth and positional error of the contacted object w.r.t the goal location. (c) Time log of the contacted object position measured along y and z axes of the
space frame {s}. Goal lines indicate the positional references.

aforementioned proportional control law and requires further
improvement in a more sophisticated control framework. More
demonstrations of different goal locations are available in the
supplementary video.

B. Haptic Interface for Motion Guidance

This section highlights the utilization of TacLink as a haptic
interface device for intuitively guiding the motion of the robot
arm [see Fig. 15(a)], where we strategically mapped tactile
actions, including single/multipoint push and stroke into a de-
sired robot twist bVd ∈ R

6. For the single-point push actions
happening at contact locationxc [see (18)], the estimated contact
depth d(xc) [see (19)] and the normal direction n(xc) := Ni∗

[see (13)] are encoded to the spatial velocity on the x̂bŷb plane
of the end-effector frame {b} as

[vx, vy, vz]
T = kvdd(x

c)n(xc) (24)

where kvd is a constant to appropriately scale the resulting linear
velocity. In addition, we employed distinguishable two-point
contact as an interface for instructing rotational motion, wherein
a virtual pivot point brc was placed at the center of TacLink.
Thus, the rotational motion around axes of {b} frame can be
defined as

[wx, wy, wz]
T=kvd [

brc × d(xc1)n(x
c
1)+

brc×d(xc2)n(xc2)].
(25)

Since, for simplicity, the push direction was restricted to the
normal of a contact plane, we neglected the rotation/twist around
the z-axis (wz = 0), and the linear motion (vz = 0) as well.
However, the linear velocity along the z-direction could be
induced by detecting the stroke action (SA). For robust stroke

detection, we introduced a fixed time window Tw = W.Δt
(whereW is the window size), during which the possible sliding
motion on the skin surface is evaluated at a determined interval
Δt. Therefore, at each time step Δt in the time window Tw,
we measured the distance between the current contact position
xckΔt and the previous one xc(k−1)Δt as

Δxk =‖ xckΔt − xc(k−1)Δt ‖ ∀k ∈ {1, 2, . . . ,W}. (26)

Now, let us denote X = {Δxk}; |X | is the number of its
elements, and K = {Δxk | Δxk ≥ εs}, ∀k ∈ {1, 2, . . . ,W},
where εs is a distance threshold to assure that the stroke is not
misclassified due to the inaccuracy of contact localization [see
Fig. 13(a)]. Hence, the SA along the z-axis can be recognized
as

SA =

{
1, if |K| ≥ η|X |
0, otherwise (classified as push action)

(27)

where η is a classification ratio experimentally set as 0.3. When
a stroke occurs, from t ≥ Tw, the linear velocity along the z-axis
can be encoded as

vz = sgn(xc,zt+Δt − xc,zt )kωd

∥∥xct+Δt − xct
∥∥

Δt
(28)

where xc,zt+Δt and xc,zt are the z-coordinates of xct+Δt and
xct , respectively, and kωd is a constant scale of the an-
gular velocity. Finally, the resultant desired twist bVd =
[vx, vy, vz, wx, wy, 0]T was mapped to commanded joint
velocity θ̇ through Jacobian bJ at the end-effector.

We validated the proposed interface scheme in several experi-
ments, including various contact actions and scenarios. The con-
trol parameters are summarized in Table II. In the first showcase

https://youtu.be/NN2u8YBLITY
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Fig. 15. Motion guidance using TacLink as haptic interface. (a) Conceptual illustration for motion guidance. (b) Estimated contact locations in the experiments
of different contact actions. The time of two-point actions is referred to (d), while that of the other ones respecting to (c). (c) Time log of contact depth and resulted
robot linear velocity with respect to push and stroke contact action (shaded green and blue, respectively). (d) Time log of contact depth and robot angular velocity
resulted from two-point contact action at different contact locations.

TABLE II
CONTROL PARAMETERS FOR PUSHING AND MOTION CONTROLLERS

of push and stroke actions, the two actions could be distinguished
by distinct patterns of the contact depth [see Fig. 15(c)]. In fact,
a stroke, performed by a human digit, yielded relatively sharp
changes in the contact depth profile, while stable intensity was
observed with a push action. The linear velocity along the z-axis,
resulting from the SA, was linearly scaled with the rate of contact
positions over the duration Δt = 0.03 s, while the robot motion
along the other two axes was triggered by the push action with the
speed and direction depending on the contact depth and location
[see Fig. 15(b)], respectively. Note that since the push/stroke
classification requires the window size W = 8 to execute, the
robot’s response would be delayed for at least 0.24 s, just as

the time window Tw. In addition, the delay time might increase
due to the misclassification between the single- and two-point
contact scenarios. While this problem could be addressed by
more advanced classification algorithms (e.g., machine learning
techniques), it can positively enable users to feel safer in the
human–robot interactive tasks.

Furthermore, in the two-point contact condition [see
Fig. 15(d)] and its specific pairs of contact positions [see
Fig. 15(b)], the robot rotated around either x̂b or ŷb. This
showcase of haptic interface for motion guidance based on our
large-scale tactile device is expected to provide initial hints
for more action-based human–robot interaction strategies. The
demonstration of robot motion guidance and other applications
of TacLink on safety control can be found in the video.4

VII. DISCUSSION

A. Skin Geometry Affects Scalability and Extensibility

The showcase of SimTacLS in this article is based on the
large-scale TacLink sensor, whose shape and size are unique

4[Online]. Available: https://youtu.be/NN2u8YBLITY

https://youtu.be/NN2u8YBLITY
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and much different from the typical ViTac sensors reported
in the literature. It is paramount that the working principle of
SimTacLS does not depend on skin size or shape. Within the
scope of this article mainly focusing on the applicability of
SimTacLS to large-scale sensors, an in-depth discussion of the
previous argument is essential.

Theoretically, skin geometry poses no restriction to the SOFA
simulation tool as long as the material properties and boundary
conditions of the skin are accurately given. Similarly, the Gazebo
module is not dependent on skin geometry but on light conditions
and on extrinsic and intrinsic parameters of the camera system.
We posit that if the skin geometry allows the visibility of visual
cues in tactile images at each tactile interaction phase, then Sim-
TacLS is applicable. For example, owing to the nature of TacLink
skin where markers are vertically aligned [see Fig. 2(a)], markers
in the middle region are very sensitive to occlusion, especially
during the contact phase. An adverse effect of such phenomenon
on sensing performance was certified in [11] in the case of cylin-
drical skin and was expected to be more detrimental in the case of
a barrel-shaped body. However, existing ViTac skins on bodies
with flat or curved designs possess markers that are horizontally
distributed all over the image plane. As a result, the effect of
missing visual cues is minimized. This discussion strengthens
our hypothesis that SimTacLS is promising for ViTac systems
of various sizes and shapes.

On the other hand, regarding markers, it is obvious that their
morphology and density determine the resolution and accuracy
of obtained tactile information. Nonetheless, it is still question-
able whether marker distribution or even marker design affects
the overall performance of TacNet. Since SimTacLS is designed
toward a unified platform for acquiring data and training online,
it is worth investigating the morphological design of markers
and their related meshing in SimTacLS to accelerate the process
without compromising sensor accuracy. While the data acquisi-
tion process of the SimTacLS platform has been implemented
offline, it is required to accelerate the computation process as
much as possible as technology allows such as by multireading
or GPU-based computing to meet potential requirements of
real-time applications.

Regarding the bandwidth of the proposed sensing system,
it depends on the required processing time and mechanical
properties of the soft skin. Since trained networks are compact
in size, real-time processing is not a problem as demonstrated in
our previous analytical method [11]; therefore, the sampling rate
is dependent on the frame rate of the camera. In this research,
we could implement 120-Hz sampling rate on 120-frames/s
cameras on TacLink. Therefore, the bandwidth of the sensor
can be justified mostly based on the mechanical properties of
the soft skin. For the TacLink, the stiffness of the skin can also
be varied by the inner pressure value; thus, it is expected that
the bandwidth of the sensor could be implemented online, given
pretraining in SimTacLS.

B. Open Problems

1) Force Detection: In this article, SimTacLS was exploited
to assess skin deformation resulting from contact occurring on

the whole-body because such information can reveal features
of tactile perception (contact location, size of contact area,
vibration, etc.) at large scale. Human mechanoreceptors cannot
convey in detail how much force is acting on skin. In addition,
large-scale sensing is usually aimed at human–robot interac-
tions rather than task-based ones, where information of force is
deemed redundant. On top of that, toward a simulation frame-
work for interactive robotics systems, TacNet was designed to
be easily adaptable for different physical attributes, especially
contact forces, other than the prediction of nodal displacements
(skin deformation). In the future, for the physical formulation of
interactive control problems, we aim to replace the current output
signals of TacNet with nodal forces (which can be extracted
from SOFA-based simulation), from which multicontact forces
and locations at a large-scale skin can be effectively inferred.
In fact, contact force information [λ in (1)] modeled from the
SOFA kernel could be targeted to train TacNet models in which
the same proposed sensing methods can be applied to extract
high-level perception. Note that this process only requires the
additional collection of contact forces and the pretraining of a
TacNet model, but without any further change in the proposed
pipeline.

2) Two-Point Touch Discrimination: As shown in Sec-
tion V-E, TacLink could best detect two contact points (aligned
vertically) separated by a distance of 140 mm, which yields an
acceptable sensing behavior for a whole-arm ViTac device with
a very soft skin. Related to the touch acuity of humans, large
body parts, such as arms or torso, encode low spatial acuity of
around 45 mm, while the two-point touch threshold of fingers
is about 2–3 mm [42]. In fact, the two-point touch threshold
of the present sensing device may be adjusted by varying
the skin morphology, such as changing the skin material (e.g.,
stiffening) or increasing the air pressure in the enclosed skin. We
may expect a shorter detectable two-point distance as the skin
becomes stiffer, which results in the reduction of the number of
deflected nodes under the same acting force [expressed through
(3)]. In addition to a mechanical solution for adaptable sensing
behavior, it is possible to enhance two-point spatial acuity by
utilizing contact forces, which are represented by the Lagrange
multipliers λ [see (1)], as a source for CRL algorithm rather than
nodal displacements. Thereby, with the contact forces inferred
by TacNet (trained on the force labels obtained from SOFA
kernel), contact regions would be narrowed down to contain only
the nodes in physical contact with the external environment.

3) Applications: In this article, we attempted to showcase the
use of the TacLink device in task-based interactions, including
object pushing, motion guidance, and contact detection/reaction,
as highlighted in Section VI, by which we argue that these
tasks are infeasible to achieve by existing small-scale tactile
sensors. These preliminary demonstrations are also expected to
lay the groundwork for more sophisticated tasks based on tactile
sensing at large area, such as haptic exploration/manipulation
in cluttered environments [43] and robot learning by demon-
stration. Last but not least, the provided tactile information
could be integrated with proven high-level controls for other
robot systems, such as mobile robots that are beyond the robot
manipulator presented in this article.
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C. Novelty

1) Large-Scale Tactile Sensing Problems: Even though pre-
vious works, such as TACTO [14] and Tactile Gym [15], could
perform simulation on ViTac sensors in bodies of different
shapes (e.g., hemisphere, cylinder, or flat), the feasibility of
applying these simulators to large-scale sensors remains ques-
tionable. First, the operation of GelSight-like sensors strongly
depends on the gel layer and the reflective-light work envi-
ronment, which pose challenges in setting up suitable lighting
conditions over a large area. Second, since external objects often
come into contact with the large-scale TacLink in a direction
perpendicular to the optical axis of a camera, there is a high
possibility that two different contact locations may each or in
combination yield imperceptible depth-based images. Hence,
virtual depth-based images might provide insufficient and accu-
rate tactile information in the context of large-scale ViTac soft
sensors. Because of these possible problems as tactile devices
scaled up, we strongly argue that a more realistic simulation
platform with high-fidelity soft body interaction and realistic
marker rendering, such as SimTacLS, is essential and worth
investigating for accurate tactile sensing at a large scale.

2) Task Transferring Schemes: As reported in [15], Tactile
Gym trained tactile-driven tasks, such as edge/surface following,
object rolling, and so on, with the input of depth imprint images
through reinforcement learning frameworks, which coupled tac-
tile sensing with task performance. Thus, training a main task in
the coupled manner may require setting up a new environment or
retraining from scratch as tasks are newly defined (due to training
losses defined differently on a task basis). In contrast, Sim-
TacLS decoupled sensing problems from the desired end-task
performance; thus, transferred tactile information was utilized
as tactile feedback for control tasks, but not tactile images. By
doing this, we could focus on integrating the transferred tactile
information into potential or novel tactile-driven tasks.

VIII. CONCLUSION

In this article, we presented a pipeline named SimTacLS for
simulation and training of a ViTac sensor at large area, taking
into account compliant contact mechanics of the skin and actual
showcases in robotics. The pipeline offers rich tactile informa-
tion, particularly skin deformation, to learn sensing skills for
a large-scale TacLink device. We demonstrated that a tactile
neural network (TacNet), learned from the obtained simulation
dataset, could trigger high-level tactile perception (i.e., contact
detection and localization) with potential to benefit robotics
tasks. In comparison with other tactile sensors (of different
sensing principles), our system offers large-area sensing with
a simple setup and least influence on the mechanical properties
of the soft skin (no embedded sensing elements). Meanwhile,
the proposed system requires large amount of data for training,
which may increase the implementation time and cost. On top
of that, the pipeline has possibilities for transferable learning
of robotics tasks in virtual environments and leaves room for
the scalability of a broader range of ViTac devices of diverse
shapes and sizes. In the future, more elaborations on the ap-
plication of the proposed system will be tackled to bring in a

holistic approach for the implementation of large-area tactile
sensing-based robotic scenarios.
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