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Abstract—Vision-based soft sensors have emerged as a promis-
ing solution for multi-modal sensory systems. Rather than relying
on complex integrations of numerous specialized sensors, these
devices are advantageous in achieving multiple perceptual capa-
bilities with a single device. However, the unsolved bottleneck for
existing systems lies in preventing perceptual interference among
visual fields and establishing a reliable mechanism for switching
between perception domains. In this study, we present Vi2TaP, a
novel mechanism leveraging the cross-polarization phenomenon
to shift one perception domain to another in a tactile-proximity
multimodal sensing paradigm. The core concept involves two
polarizer films placed back-to-back. By adjusting the Plane of
Polarization (PoP) between 0 to 90 deg, the camera can either
fully open its Field-of-View (FoV) to the external environment
for proximity sensing or restrict it to the internal space between
the polarizers, tailored for tactile sensing. First implementation
of Vi2TaP is showcased on a soft sensorized gripper. Additionally,
we introduce efficient learning pipelines for both proximity and
tactile perception, along with effective strategies for extracting
valuable information. The experiment results have demonstrated
the advantages of the proposed multi-modal sensing scheme in
grasping and manipulating tasks. This mechanism is anticipated
to accelerate the development and adoption of multimodal vision-
based soft sensors across a wide range of practical applications.

Index Terms—Force and Tactile Sensing, Perception for Grasp-
ing and Manipulation, Soft Sensors and Actuators, Sensor Fusion
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Fig. 1. General scheme for Vi27TuP mechanism which is based on the
cross-polarization configuration to enable multi-modal visual-tactile sensing
modalities.

ISION and touch offer noticeable advantage for robotics
Vperception. Although the former modality has gained
much benefit from the advances in vision systems and image-
processing techniques, the rapid emergence of tactile sensors
has recently been observed. Perceived tactile feedback (e.g.,
contact forces, contours) unlocks various intelligent robotic
behaviors [1] that potentially bring profit to areas requiring
rich contacts such as the medical field [2], and agriculture
[3]. However, an inevitable perception gap exists due to
occlusion issues in the vision system and the lack of pre-touch
information. To tackle the above issue, proximity perception
is expected to fill this shortage with a pre-contact supervising
channel to prevent unintentional collisions and occlusions
during operation [4]. Efficient integration of proximity sensing
modality as a complementary for tactile perception is still in
the infancy stage.

Existing literature explores a great deal of multi-modal
sensing devices that include both proximity and tactile modes
[5], [6]. The most straightforward approach involves assigning
each mode to a specialized measurement element [7]. Despite
offering several advantages, these tactile sensors also come
with a range of limitations. Firstly, the distributed network
of sensing components covering the touch surface presents
significant wiring and fabrication issues in addition to the
complexity of data acquisition and processing [8], [9]. Sec-
ondly, with the growing interest in flexible touch interfaces,
the integration of sensing units (mostly rigid) within a soft
body can hinder inherent compliance [10].

From another perspective, the coexistence of several sensing
abilities using only one type of sensing component has become
preferable. Vision-based tactile sensory systems (hereafter
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shortened as ViTac) have stood out as a dominant method
for developing tactile sensors thanks to numerous advantages,
including high resolution, ease of fabrication, reliability, cost-
effectiveness, and non-invasive integration [11]-[13]. To high-
light the contrast of visual cues, the touch surface of most
existing ViTac systems is typically opaque to isolate the
internal space from the outer. The authors in [14] established
the first proof-of-concept for soft transparent skin with printed
markers, named FingerVision, to acquire both visual and
tactile perception. This sensor exhibited the effectiveness of
proximity information in complementing tactile sensing to
perform grasping tasks. However, due to the transparent skin,
perception fields of tactile and proximity modes are overlapped
causing degradation in sensing capability, particularly in un-
stable lighting conditions. Following this pioneering work,
several attempts have tried to tackle such problems by utilizing
image-processing techniques [12] or generative adversarial
learning algorithms [15] to selectively remove either markers
for visual features or the background scene for tactile fea-
tures. However, these approaches assign significant computing
burdens to processors. More recently, a growing number of
works focus on mechanisms that can control the transparency
of the skin to activate selectively desired sensing mode. For
example, in regards to reflective-based ViTac systems, the
authors from [13], [16] have modulated the internal light
to shift back and forth between the transparent and semi-
transparent state. Nevertheless, they all faced difficulty in
finding the proper setting for the illumination system adaptable
to various object’s colors, approaching angle, and lighting
conditions of the environment.

Previously, we introduced a novel vision-based sensing sys-
tem featuring the whole body with both the sense of touch and
the proximity [17]. The key distinguishable attribute lies on the
incorporation of PDLC (Polymer Dispersed Liquid Crystal)
film within the soft skin. This film is able to actively modify
the transparency of the skin between opaque and transparent
states, corresponding to tactile and proximity modes, respec-
tively. Although this paradigm is promising, there remain
several drawbacks. First, customized PDLD film’s price per
area unit is still high, roughly 100 USD/cm? at the time of
purchase. Moreover, it is required a specified control toolbox
to trigger the film making this infeasible for small-scale robotic
devices.

In this article, we establish the first insight of Vi2TaP - a
novel, cost-effective, and scalable design scheme for visual-
tactile sensors that leverage the polarization phenomenon to
actively manipulate the monitoring range of the camera (see
Fig. 1). Polarization, in physics, is the process in which unpo-
larized light, consisting of electromagnetic waves oscillating
in multiple planes, is confined to oscillating in a single plane.
The polarization can be done by the Polaroid filters, or simply
polarizers. The polarizer serves as a filter to block incident
light waves but those in a specific plane of oscillation, known
as the plane of polarization (PoP). This mechanism further
reveals a configuration where a pair of polarizers is placed
back-to-back. By orienting one filter at O or 90 degrees relative
to the other to create C'ross — Polarization configuration,
we can control whether the polarized beam produced by the

first filter passes through the second filter, i.e., the visibility
of the outer background to the camera. This paper also
showcases the successful adoption of Vi27aP in a soft, multi-
modal sensorized gripper, emphasizing the reliability of the
perception activation method. Furthermore, it highlights the
effectiveness of proximity and tactile perception, particularly
in enhancing grasping and manipulation performance. To the
best of our knowledge, this is the first use of the polarization
phenomenon in the development of a soft robotic mechanism.
The primary contributions of this work are as follows:

1) Proposal of a unified multi-modal (proximity and tac-
tile) sensing infrastructure based on polarization phe-
nomenon.

2) Introduction of the first implementation of this system
on a soft fingertip, detailing the mechanical design, fab-
rication process, and methods for proximity and tactile
data extraction enabled through monocular depth-map
estimation and zero-shot sim2real learning.

3) Evaluation on the significance of visual-tactile fusion
perception for enhancing grasping efficiency.

II. IDEA, DESIGN AND FABRICATION

A. Conceptual Paradigm for Vi2TaP

The conceptual scheme of Vi2TaP can be reviewed in Fig.
1. The underlying principle lies in the ability to actively
manipulate the visibility of the external environment to the
internal camera. This function is featured by two parallel-
located polarizers, separating the exterior space from the
camera. Specifically, the first polarizer (referred to as Pj)
is embedded inside a transparent, soft skin with a matrix of
markers printed on the inner layer to create a touch interface.
Whereas, the second polarizer (P») is positioned in front of
the camera lens, ensuring all light sources (or objects) within
its field of view (FoV), including those polarized by the P;.

Given this setup, multi-modal sensing modes are discovered
under the following conditions:

o Proximity mode: When the PoPs of P; and P, are
aligned at the same angle (# = 0deg), the light from
the exterior space will be able to travel through P; and
P,. This enables the camera to scan objects from the
external environment (see Fig. 1), allowing the extraction
of proximity information from nearby obstacles.

o Tactile mode: When the PoPs are orthogonal to each
other (f = 90deg), the light sources polarized by P
will be completely intercepted by P». In this setting, the
camera is only capable of tracking marker displacement
to perceive tactile sensation while the exterior becomes
invisible (Fig. 1). The intensity variation of a polarized
light Iy transmitted through another polarizer can be
formulated using Malus’s law [18]:

I = IOCOSQO, (D

where [ is the resulted light intensity corresponding to
the angle 6 between P; and Ps.
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Fig. 2. (a) Structural design of the proposed Vi2TaP-based fingertip including
the actuation system, illumination system, polarizer films, and the soft
skin accompanied by its fabrication procedure. (b) presents the simulation
environment in SOFA, in which, the mechanical contribution of the polarizer
film is modeled as a series of virtual springs (c).

B. Design and Fabrication

In this section, we introduce the design and fabrication
procedure for a soft robotic finger that integrates dual-sensing
modalities using the paradigm from Section II-A. The design
architecture accommodates a finger body serving as a core
to mount three primary modules: the transparent soft skin
and illumination system, the actuation system, and the vision
system. The detailed breakdown of the proposed finger can be
reviewed in Fig. 2a. The following subsections will provide
detailed descriptions of the fabrication and assembly of these
components, along with critical design considerations.

1) Transparent Soft Skin and Illumination System: First, we
utilize Solaris™silicone rubber (Smooth-On, USA) to fabri-
cate a soft, transparent skin with dimensions of 48x43x5 mm
(Iength x width x thickness). This material is chosen for its high
transparency and more importantly, notable flexibility which
assures a gentle touch even with the presence of the polarizer
film. The first polarizer P; is sandwiched in between for stable
positioning under external stimulation. Markers are distributed
in a 9.5x8.5mm grid pattern creating a 5x4 matrix (see
Fig. 2a). Inspired by [19], we color the markers with UV-
fluorescent pigment (Silc Pig™, Smooth-on, USA).

Regarding the illumination system, we integrate an array of
UVC LED:s inside the body frame to generate Ultraviolet type
C (UVC) radiation, which triggers the light-emitting ability of
fluorescent-based markers. It’s worth noting that UVC light is
typically undetectable by standard RGB cameras. Therefore,
visual noises are significantly diminished.

The fabrication process is illustrated in Fig. 2a. First,
the marker array is created. Each dot is manually placed
into a pre-etched hole with the dimension of 1.5 mmx1 mm
(radius xdepth) on an acrylic plate. This plate is then assem-
bled with a 5 mm-thick frame to form the mold which also
serves as the touchpad afterward. To adopt the polarizer film

(Py), it will be gently submerged in the raw silicone rubber and
situated at the desired position. After 4 hours, the touchpad is
then assembled with the finger frame.

2) Actuation System: The rotation of P, is supplied by a
3D-printed gear set with a ratio of 1:1 and a servo motor, as
illustrated in Fig. 2a. The driven gear, which carries the filter,
is positioned coaxially with the principal axis of the image
frame. The negligible load allows us to use a cost-effective
servo motor (MG90S). The motor and the camera are affixed
to the rear carrier as shown in Fig. 2a.

3) Vision System: The vision system consists of two im-
portant elements: camera and polarizer filters. For the camera,
the mini USB camera ELP-USB100W07M-MHV 120 with the
FoV of approximately 120° is chosen. Moreover, we also
turned off the auto-focus and auto-light-balancing function-
alities to reduce visual noise for both proximity and tactile
sensing modes as reported in [11].

In this work, we process commercial polarizer films (ap-
proximately 3.5USD/cm? from Selens, USA) with a theoret-
ical polarization ratio up to 99%, into pieces of the desired
dimensions using a laser-cutting machine. Specifically, P;
is a rectangular film with a size of 49 x 44 mm, in length
and width, to fully cover the open view of the soft skin.
Meanwhile, P is cut into a circular shape (diameter of 20 mm)
for installation onto the driven gear.

III. MULTI-MODAL PERCEPTION
A. Tactile Perception

Tactile perception is an indispensable feature for robotic
fingers to effectively manipulate the environment. In this paper,
we rely on the spatial transition of visual cues (markers) in
the tactile mode (i.e., & = 90°) to infer desired information
including contact forces and location during the grasping
phase. We build upon and refine the framework presented
in [11]. The simulation module generates training datasets
extracted from simulated tactile images and corresponding
tactile knowledge. Then, the correlation between these two
domains is established by training a deep neural network.

1) Elastomer-Polarizer Composite Skin: Modeling, Simu-
lation and Visual Recording: Firstly, to accurately replicate
the mechanical behavior of the soft skin with an implanted
polarizer, we leveraged SOFA' - a multi-physics engine based
on Finite Element Method (FEM) (Fig. 2b). We adopt an
elastic material model (via Young’s modulus (£) and Poisson’s
ratio (v)) and co-rotational FEM formulation [11] for the
characterization of the soft layer. While E' is determined as
0.04 N/mm? by tensile test, v is set as 0.49 [20]. The generic
dynamic equation for a deformable body is as below [21] :

(M + dt’K + dtC)g = —dt’Ké + dt (F' — F'™)

2
+dtITX, @

where q € RV*3 is the 3D position of element nodes, M is
total mass of the soft skin. Fe** denotes the external forces
(e.g, gravity) at each time step ¢ and F'"* represents internal

'Simulation Open Framework Architecture: www.sofa-framework.org
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int
forces upon the system state. K = 8g
q

stiffness and damping matrices, respectively.

In the context of interaction with the surroundings, SOFA
treats all physical contacts as constraints through the term
JT ), governed by contact mechanics based on Signorini’s
law [21]. The Lagrange multipliers, Ag, where Q represents
the subset of nodes under contact, denote the magnitude of
the contact force, while the Jacobian matrix J(q) gathers the
constraint directions projected on q € Q. Summing J7 \g,
hereafter shortened as X yield the estimation of the resultant
force vector (magnitude, direction).

On the other hand, we emulate the presence of the polar-
izer by incorporating a series of virtual elastic springs with
stiffness k;, where ¢ is skin nodes within the polarizer plane.
These springs act as a stiffening substrate that restrains the
deformation of the outer soft layer from its original position.
At an equilibrium state ¢, the virtual springs generate internal
forces f*P""9, which are proportional to the nodal displace-
ment. Given that the reinforcement effect of the polarizer film
varies across the soft skin, determining the stiffness coefficient
k; is challenging. Considering the symmetrical geometry, the
flat contact surface, and the fact that the stiffness k; has a
descending tendency toward the center, we hypothesize that
the distribution of k; can be represented by the lower half of
a spheroid (see Fig. 2c). The general equation is as follows:

int
and C = agq are

2 2 2
%+%+%:1,s.t.75<2<0, 3)
where a, b, and c are half the lengths of the principal axes
defining the overall geometry as pictured in Fig. 2c. The
stiffness k; = z; of the virtual spring attached to any other
point p;(z;, y;) can be estimated using the following equation:
2 2
2= —c 1,%,% @)
Based on this equation, it is crucial to seek an appropriate
set of coefficients a, b, and c. For simplification, a and b are
chosen so that the spheroid neatly overlays the whole contact
surface. Next, an empirical study was conducted to find the
optimal ¢ so that the simulated contact force A¢ sim is close
to the actual values. Here, we collected actual forces exerted
on four representative points located in a different quadrant of
the skin. Then, ¢ can be estimated as follows:

¢ = arg mcinﬁMSE()\g,simv AC real)- )

2) Training Data Collection: This section addresses the
data collecting procedure for the image of the inner skin
surface correlating with tactile information extracted from the
simulation model described above. First, the SOFA simulation
scene emulates the indentation of a spherical pointer on the
soft skin portraying the gripping action. At each pushing
position P = [P, P,] [mm], the indentor is driven perpendic-
ularly toward the top surface with a constant speed until the
contact depth reaches 3 mm. This limitation is experimentally
determined based on the deformation constraint at the edge
region of the soft skin, which equivalently defines the sensor’s
operational range. At each 0.2 mm step, the relevant tactile
data, including the contact force vector A = [Az, Ay, A.]1[N]

and the nodal position X € RN*3 will be recorded. Skin
deformation Dy, is calculated as follow:

Dgt,i ::Xi*XO,iaViEN:{lan",N}a (6)

where X := [Xo,; € R? |,Xo; = q;(0),Vi € N] are initial
state of each node. For stable grasping, it is envisioned that the
desired contact area is within the central region of the skin.
Hence, the tactile data acquisition procedure is implemented
on a subset of nodes (176 nodes) within the Region-of-Contact
(RoC) as seen in Fig. 2b.

Next, we employed Unity to render simulated images Iy, (a
resolution of 640 x 480 pixels) based on deformation inputs
transferred from SOFA environment. The procedure can be
reviewed in detail from [11]. Furthermore, while [11] used a
subset of real images to address the sim2real gap, this paper
employs the domain randomization technique to enable zero-
shot learning of the tactile model based solely on simulation
images. Specifically, the procedure involves performing affine
transformations during the training process to diversify the
perspective of tactile binary images via translation, rotation,
and scaling. The database includes 2640 samples, in which
80% (K = 2112 samples) is used for the training process and
the remainder is for validation.

3) Training: The training process is performed on the
dataset D = {I% D} }/< |, collected in both Unity and SOFA
environments. However, rather than directly using the tactile
images as input for the TacNet model, we leverage the vector
displacements of the markers as the visual input representa-
tion, which proves more effective for the simulation-to-real
process. The displacements of the markers are computed as
AUF = UF — U, € R™*2, where m is the number of
markers, and U* and U, represent the positions of the tracked
markers in the instance k£ and at the rest (no-contact) state,
respectively. To detect the marker array in a single image Ifim,
we first convert the image to binary, then apply Canny edge
detection to identify the round markers, locating the central
positions of all markers in the coordinates of pixels. Given
the TacNet model 7, parameterized by ¢, the training loss
function Lysg(+) is computed as:

Luse(Dy, DE,) =

3in Z Z (détvi - dgst,i)Qv 7

iEN je{z,y,z}

where DY, = T,[AU*|, and &/ , Vj € {z,y,2} are the
components of displacement vector D¥; = [df, d!, d?] at the
respective skin node ¢ € A along the z, y and z axes. For
optimizing ¢, we use Stochastic Gradient Descent (SGD) with
an experimentally tuned learning rate of 0.015 over 40 epochs.
Additionally, unlike the network proposed in [11], we employ
a simple chain of three fully connected (MLP) layers, making
it well-suited for handling small, structured inputs and ideal for
small-scale applications thanks to low computational cost. The
input layer is adapted with two input channels representing
the marker displacements AU in the 2- and y-directions,
respectively. The model is trained by using a desktop PC
(AMD Ryzen™ Threadripper™ 3970X Processor) with GPU
acceleration (RTX 8000, NVIDIA).
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B. Proximity Perception

1) Data Preparation and Training: Self-consciousness
about the object before approaching contact is necessary to
enable safe and optimized grasping strategy. Particularly, we
employ a data-driven monocular depth estimation based on a
DNN [22] to generate a depth map that records the presence of
obstacles surrounding the touchpad and serves as the basis for
distance measurement. Here, we fine-tune the proven MiDas
model [22] on MannequinChallenge dataset [23]. The image
dataset was, at first, synthetically augmented using the alpha
blending technique to replicate the see-through views. The
monocular depth estimation network (DepthNet) is trained to
regress the augmented images to corresponding depth images
Z# generated by the MVS pipeline proposed in [24]; which
shows as ground-truths for model training.

For the loss function, we adopt a scale-invariant depth
regression loss, as proposed in [22]. Given a raw estimated and
ground-truth depth map Ze, Z&' € R**?, the scale-invariant
regression loss can be derived as:

»CDepthNet = »Cssitrim(ZCS[v th) + acgrad(ZCS[a th)v (8)

where, the first term Lggiim penalizes the absolute difference in
depth values between Z*' and Z#', and the second multi-scale
gradient term L, encourages sharp depth discontinuities and
smooth gradient changes.

For training DepthNet model, we initialize the DepthNet
based on the ResNet multi-scale architecture [25] with the
model weights as mentioned in [22]. For the fine-tuning
process, we use Adam optimizer with the learning rate ini-
tialized at 10~%, then linearly decaying at the 50" iteration
out of a total of 100 training steps. The hyperparameter « in
the combined loss function (8) is experimentally set to 0.1.
Detailed network architecture can be found in [25].

2) Distance Estimation: This section presents a procedure
to estimate the distance between the object and the top surface
of Vi2TaP using the depth map Z°' produced by DepthNet
model. With the assumption that the closer object would
exhibit a larger brightness value in the grey scale, the target
object will be recognized by masking other obstacles using
binary thresholding. However, since the pixel value substan-
tially varies as the background or ambient light condition
changes, it is challenging to solely infer the distance based
on the brightness value. Alternatively, we make use of a more
intuitive metric based on object’s pixel area 4 detected in
the depth map. This metric is based on the observation that
an object’s area increases as it gets closer to the touch skin.
Dimensionless metric r can be calculated as:

r= TR (9)

where A represents the pixel area when the obstacle is initially
detected and .A{, is a constant representing for initial area
of the reference object. Equation 9 actually calibrates the
pixel area of an arbitrary object by multiplying this value
with the ratio of the initial area, Ag, to that of the reference
object Aj. This approach is particularly effective with gripper
applications thanks to the fact that the object is typically

TABLE I
LIST OF EXAMINED POINTS.

Index |1)2]3 |4 [5[6]7]8]9|10]11][12]13
x[mm] [0 0] 0|0 [5[5]5]5]10[10]10]10]15

ylmm] [0 |5 10 [15][0|5[10[15] 0 |5 [10]15]17

centered between the jaws with constant stroke before the
gripping action. Hence, the initial pixel area Ay is expected
to be determined at the same distance. The evaluation of the
metric is presented in the next section.

IV. EXPERIMENT RESULTS AND DISCUSSION

In this section, we evaluate the sensing performance of each
mode as an individual ability. Then, a strategy to harmonically
incorporate both perception fields for enhancing the grasping
proficiency will be validated via a practical scenario. Here,
Vi2TaP was implemented with the desktop PC (Intel(R) i5-
9600K 3.70GHz, 32G RAM, NVIDIA GeForce GTX 1050).

A. Tactile sensing mode

1) Contact force estimation: Tactile sensing ability will be
evaluated through the estimation accuracy for contact location
and contact force on different regions of the tactile skin. The
evaluation session starts with a series of indentation attempts
vertically conducted on the predefined locations (see Table I),
in which Nodes 1 to 12 are within the RoC (see Fig. 2b),
and Node 13 is outside the RoC. Due to the symmetrical
and flat touch surface, indention locations are selected within
a quarter of the RoC region. The experiment setup can be
seen in Fig. 3a, where the robot arm (Denso VP-6242M) will
carry the finger and drive toward the indentor with a constant
speed (10 mm/s), until reaching the desired indentation depth
of 3 mm, with sensor feedback collected at 0.5 mm intervals.
During the indention, estimated normal contact force A\, and
pressing position P are recorded for post-processing. Note
that only A, is comparable to the measured value due to its
absolute dominance over other components. This process is
repeated five times and the recorded data is synchronized with
actual values from a Force Gauge (Imada ZTA-5N) and filtered
out outliers before in-depth analysis. In this mode, the system
achieves a sampling rate of 25 Hz when using 30 FPS cameras.

The contact force estimation results are summarized in Fig.
3b-3d. Figure 3b presents the average errors in estimated con-
tact forces in all examined nodes. At first glance, the average
error rate appears to be below 23%. However, it is important
to note that inaccuracies during the initial indentation phase
(0-1 mm) contribute significantly to these values as seen in
Fig. 3b. A similar observation has already been reported in
[11]. This phase is considered a threshold above which the
sensing performance stabilizes. Moreover, the results indicate
that the sensor is highly sensitive to the escalation of external
stimulation. Additionally, the estimation accuracy varies with
the contact location. Figure 3c provides strong evidence for
this observation by showing the error distribution (Full-Scale
(FS) error) across the regions tested. Interestingly, the accuracy
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(a) Experiment setup.

(b) Force estimation error.
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Fig. 3. Contact force estimation evaluation. (a) Experiment setup for tactile sensing assessment. Figure (b) shows the force estimation error rate measured at
12 contact nodes plus 1 out-bound node, repeatedly five times with the indention depth up to 3 mm. Figure (d) reports the error distribution (Full-scale (FS)
errors) over a quarter of the tactile skin. (c) A data sample of Node 11 demonstrates the good matching between estimated values and actual values, thus

validating the reliability of the tactile model in force sensing.
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Fig. 4. Contact location localization evaluation. (a) Comparison of contact
localization accuracy (l2-norm accumulated in five trials) for the whole range
of indentation depth. (b) The spectrum illustrates the overall precision across
a quarter of the tactile skin. (c) Deviation in = and y coordinates for the case
of 1-3mm indentation depth. The fact that all deviation bars are within the
contact region verifies the reliability of the tactile model.

in the central area is slightly lower than that of the edge
regions, though the difference is not substantial. This variation
can be attributed to the inaccuracy of the skin simulation
model. Despite this limitation, the precision of this sensing
ability is still validated via Fig. 3d which shows good matching
between estimated force values and actual values at Node 11.

2) Contact location estimation: The ability to localize the
contact region will be assessed via the ly-norm metric |lel|,.
The equation for calculating ||e]|, is shown below:

n
. . 2 . . 2
||e||2 = Z(( aZ:,est - :Zc,true) + ( ;Z,est - ,P;,true) )’
=1

(10)

where subscripts .s; and 4, are presenting for estimated and
true values of the contact location, while n is the number of
trials. Equation 10 quantifies the deviation of the estimated
values from the actual values and sums the error across all
trials. This approach not only assesses the sensor performance
but also validates its stability.

Figure 4a presents the total estimation error across the
examined points. The plot indicates that sensor precision
decreases when contact occurs near the edges, compared to
areas closer to the center. This observation is further validated
by the error distribution map shown in Fig. 4b. The potential
explanation lies in the nature of the perception inference model
which is based on marker movement and the fact that the
skin is vertically aligned with the camera axis. Specifically,
spatial markers movements, when contacts occur at the edge
regions, are most likely manifested less significantly than in
the central. Furthermore, according to Fig. 4c which denotes
the deviation domain in x and y axes, we can claim that the
estimated contact location will not fall outside the RoC region,
i.e., irregular values or outliers. This statement in combination
with the force estimation results completes the verification of
the reliability of the tactile sensing modality of the sensorized
soft finger based on Vi2TaP.

3) Proximity sensing mode: This section evaluates the per-
formance of the Vi2TaP finger’s proximity sensing modality,
particularly in estimating the distance between an object and
the soft skin. The results presented here will demonstrate the
feasibility of extracting the metric r from the depth map Z
as a reliable substitute for the distance measurement.

The experiment setup is illustrated in Fig. 5a. Similarly, the
Vi2TaP finger will be driven toward an object by the Denso
robot arm with constant speed. Initially, the finger pad will be
positioned 60 mm away from the object. This gap is expected
to go down to 10mm at the end of the travel. During this
motion, the metric r will be computed and matched to the
actual distance derived from the robot arm’s movement. This
procedure will be repeated five times for each trial to assess
the repeatability of the proximity mode. According to Eq. 9, r
is calculated w.r.t the reference object. In this test, we allocated
a cylinder with a diameter of 20 mm (D20) as the reference.
The evaluation was conducted with two other cylinders with
diameters of 30mm and 40 mm, so-called D30 and D40,
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Fig. 5. Proximity sensing evaluation. (a) Presents the experiment setup for
distance measurement. (b) Report the effectiveness of distance estimation via
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one (D20). Generally, the result reveals that the proposed algorithm executes
accurate estimation within the reliable region (from 35 mm downward).
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Fig. 6. Gripping demonstration includes several stages: Calibration - utilizing
proximity feedback to relocalize the gripper jaws so that the object is in the
middle, corresponding to the approximate distance of 20 mm. Approaching
- driving two fingertips toward the object until the distance is within 10 mm
and switch to Tactile mode. Gripping - gripping the object with contact forces
Forcel and Force?2 for lifting and preventing slippage, respectively.

respectively. The sampling rate of the system in this mode
is approximately 22 Hz.

Figure 5b reports the variation of r for three tested objects
that the arm relies on to stop the motion. Notably, via the
metric r, the Vi2TaP finger accurately estimates the end-
distance value of 10 mm, with only a small error (11.51 mm
and 12.58 mm for D30 and D40, respectively). This highlights
the utility of the metric r in determining the optimal point for
transitioning between vision and tactile perception domains,
which is crucial for our device’s performance. From another
perspective, as the finger moves, the estimated distance r
is only reliable within the range from 30 onward. Outside
this range, significant deviations of r are observed for both
cases, D30 and D40, compared to that of the reference object.
Nevertheless, given that the interaction space for most gripper
devices is typically small and fixed, this detection range
remains practical and effective. This finding also suggests the
proper point where the initial area .4, is obtained.

B. Gripping demonstration

This section elaborates on how a multi-modal visual-tactile
sensing scheme could benefit the grasping performance of

a robotic gripper, particularly in object localization and in-
hand stabilization. In this paper, we draw inspiration from
the challenges inherent in parallel grippers. These grippers
typically have each finger connected to a synchronized system
driven by a common actuator, enabling concurrent motion.
Although uniform and coordinated movement of all fingers
allows for a secure and stable grasp, it requires the gripper
to accurately position itself so that the object aligns with the
central axis. We envisage that the seeing-through view of the
Vi2TaP-based sensor (i.e., 8 = 90°) can give a hint on the
relative position of the target w.r.t each finger. This experiment
use Robotiq Gripper 2F-140 with the jaw stroke after Vi2TaP-
based fingertips installment is 90 mm. A ball-shaped object
with a diameter of S0 mm was the target. Also, this ball was
flattened creating irregular portrails to the camera to prove the
generalization of the proximity sensing capability.

The demonstration is summarized in Figure 6, showcasing
key snapshots and sensor feedback from both tactile (contact
force \,) and proximity sensing modalities (distance metric
r) in response to various actions. The experiment begins
with the object positioned randomly between the two fingers,
though off-center; specifically, it is closer to Finger 1, meaning
r1 < ro. Then, the proximity modality is used to relocalize
the gripper position so that the object is exactly middle, i.e,
r1 /= 19 as seen in Fig. 6, so-called Calibration phase. Next,
the fingers begin the Approaching phase, moving toward the
object until they are within a 10 mm distance to the object.
At this point, the tactile sensing mode is activated in both
fingers for the Gripping phase. The gripping action continues
until both fingers endure contact forces of 1N (referred to as
Force 1), allowing the gripper to securely lift the object. In the
final test, the object is manually pulled downward to simulate
slippage. To respond to this condition, the system monitors
changes in the contact location as an indicator to detect
potential slippage and apply additional grip force (referred to
as Force 2) to secure the object. The whole demonstration
can be reviewed in the Supplementary Video.

As observed in the Supplementary Video and Fig. 6, the
gripper successfully executed the task thanks to the aid of both
tactile and proximity sensing modalities. However, several
issues remain for consideration. During the calibration phase,
the r values for both fingers converge at 0.238, while the
actual distances from the object to Finger 1 and Finger
2 are 21.27mm and 18.73 mm, respectively. This outcome
highlights two key points: First, the calibration result is within
an acceptable range, with only a small deviation from the
expected 20 mm; Second, each finger’s performance is highly
sensitive to background conditions, leading to unavoidable
inconsistencies in r estimation, particularly in gripper appli-
cations. For tasks involving tactile sensing, a discrepancy is
observed in the estimated force between the two fingers, which
becomes more pronounced as the grip force increases. This
deviation can likely be attributed to the limited generalizability
of the tactile perception model, which relies on an affine
transformation procedure mentioned in Section III-A2. To
address this issue, more extensive randomization could be
applied to improve the model’s robustness.
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V. CONCLUSION

This article presents a unified paradigm for multi-modal
visual-tactile soft sensors, featuring an innovative mechanism
that actively shifts back and forth between vision and tactile
perceptive fields. Vi2TaP mechanism offers several advantages
including simple design architecture, reasonable cost, easy-to-
fabrication and most importantly, complete separation of the
visual and tactile perception field. Also, the first showcase of
Vi2TaP, a soft sensorized gripper, has promised a broad range
of other applications in the soft robotic field.

Beyond the contributions discussed above, several technical
challenges remain. First, although the current mode-switching
mechanism is mechanically simple, its switching rate requires
improvement. The system takes approximately 0.5-0.6 seconds
to fully transition between modes, with the primary bottleneck
being the serial communication between the central computer
(responsible for processing sensory data) and the Arduino
microcontroller (which controls the motor). To ensure a seam-
less transition between two sensing modes, adopting a more
powerful microcontroller and a faster communication protocol,
such as I2C, should be considered. The second challenge
concerns the precision of the mechanical characterization of
the composite soft layer, where the polarizer plays a crucial
role. In this work, its mechanical contribution is approximated
using a series of virtual springs distributed across the skin.
While this approach shows promise, further refinement is
needed. Specifically, the determination of the film stiffness
coefficient z; (see Eq. 4) currently relies on force data obtained
from only four locations near the skin’s edges. Improving
stiffness distribution accuracy requires incorporating additional
reference contact points broadly distributed across the entire
surface. Moreover, a more robust optimization algorithm is
necessary to determine the optimal set of z;. Finally, the
presented demonstration is limited to a pick-and-place task,
suitable for clustered environments where the object position is
unknown in advance. To fully showcase the advantages of the
multimodal visuotactile sensory system in soft grippers, future
studies should explore more complex scenarios, including
object recognition, path planning, and dexterous manipulation.

With significant potential for further development, Vi2TauP
is expected to initialize a new wave of soft robotic devices
at various scales with multi-modal perceptual modes for chal-
lenging sensing and control tasks.
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